Synchronizing with auditory and visual rhythms: An fMRI assessment of modality differences and modality appropriateness
نویسندگان
چکیده
Synchronizing movements with auditory beats, compared to visual flashes, yields divergent activation in timing-related brain areas as well as more stable tapping synchronization. The differences in timing-related brain activation could reflect differences in tapping synchronization stability, rather than differences between modality (i.e., audio-motor vs. visuo-motor integration). In the current fMRI study, participants synchronized their finger taps with four types of visual and auditory pacing sequences: flashes and a moving bar, as well as beeps and a frequency-modulated 'siren'. Behavioral tapping results showed that visuo-motor synchronization improved with moving targets, whereas audio-motor synchronization degraded with frequency-modulated sirens. Consequently, a modality difference in synchronization occurred between the discrete beeps and flashes, but not between the novel continuous siren and moving bar. Imaging results showed that activation in the putamen, a key timing area, paralleled the behavioral results: putamen activation was highest for beeps, intermediate for the continuous siren and moving bar, and was lowest for the flashes. Putamen activation differed between modalities for beeps and flashes, but not for the novel moving bar and siren. By dissociating synchronization performance from modality, we show that activation in the basal ganglia is associated with sensorimotor synchronization stability rather than modality-specificity in this task. Synchronization stability is apparently contingent upon the modality's processing affinity: discrete auditory and moving visual signals are modality appropriate, and can be encoded reliably for integration with the motor system.
منابع مشابه
Transfer from action to perception: The effect of motor-perceptual enrichment
This study investigated the effect of audiovisual integration on action-perception transfer.40 subjects were randomly divided four groups: visual, visual-auditory, control visual and control visual-auditory. Visual groups watched pattern skilled basketball player and other groups in addition to watching pattern skilled basketball player, heard Elbow angular velocity as sonification. In first st...
متن کاملModality differences in short-term memory for rhythms.
Prior research has established that performance in short-term memory tasks using auditory rhythmic stimuli is frequently superior to that in tasks using visual stimuli. In five experiments, the reasons for this were explored further. In a same-different task, pairs of brief rhythms were presented in which each rhythm was visual or auditory, resulting in two same-modality conditions and two cros...
متن کاملModality-specific and modality-independent components of the human imagery system
Imagery research typically deals with the commonalities and differences between imagery and perception. As such, it is usually confined to one specific modality. Yet, it is likely that some of the underlying processes are shared between different sensory modalities while others are modality-specific. In this fMRI study, we used a balanced design that allowed for a direct comparison between imag...
متن کاملEarly, but not late visual distractors affect movement synchronization to a temporal-spatial visual cue
The ease of synchronizing movements to a rhythmic cue is dependent on the modality of the cue presentation: timing accuracy is much higher when synchronizing with discrete auditory rhythms than an equivalent visual stimulus presented through flashes. However, timing accuracy is improved if the visual cue presents spatial as well as temporal information (e.g., a dot following an oscillatory traj...
متن کاملModality Specific Cerebro-Cerebellar Activations in Verbal Working Memory: An fMRI Study
Verbal working memory (VWM) engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 67 شماره
صفحات -
تاریخ انتشار 2013